s z ;e -
N95-19754 </
=3
=070
MIRO: A DEBUGGING TOOL FOR CLIPS INCORPORATING HISTORICAL RETE /)
NETWORKS -

Sharon M. Tuttle
Management Information Systems, University of St. Thomas
3800 Montrose Blvd., Houston, TX, 77006

Christoph F. Eick
Department of Computer Science, University of Houston
Houston, TX 77204-3475

ABSTRACT

At the last CLIPS conference, we discussed our ideas for adding a temporal dimension to the Rete
network used to implement CLIPS. The resulting historical Rete network could then be used to store
‘historical' information about a run of a CLIPS program, to aid in debugging. MIRO, a debugging
tool for CLIPS built on top of CLIPS, incorporates such a historical Rete network and uses it to
support its prototype question-answering capability. By enabling CLIPS users to directly ask
debugging-related questions about the history of a program rum, we hope to reduce the amount of
single-stepping and program tracing required to debug a CLIPS program. In this paper, we briefly
describe MIRO's architecture and implementation, and the ourrept question-types that MIRO
supports. These question-types are further illustrated using an example, and the benefits of the
debugging tool are discussed. We also present empirical results that measure the run-time and partial
storage overhead of MIRO, and discuss how MIRO may also be used to study various efficiency
aspects of CLIPS programs.

1. INTRODUCTION

In debugging programs written in a forward-chaining, data-driven language such as CLIPS,
programmers often have need for certain historical details from a program run: for example, when a
particular rule fired, or when a particular fact was in working memory. In a paper presented at the last
CLIPS conference [4], we proposed modifying the Rete network, used for determining which rules
are eligible to fire at a given time, within CLIPS, to retain such historical information. The
information thus saved using this historical Rete network would be used to support a debugging-
oriented question-answering system.,

Since the presentation of that paper, we have implemented historical Rete and a prototype question-
answering system within MIRO, a debugging tool for CLIPS built on top of CLIPS. MIRO's question-
answering system can make it much less tedious to obtain historical details of a CLIPS program run
as compared to such current practices as rerunning the program one step at a time, or studying traces
of the program. In addition, it turns out that MIRO may also make it easier to analyze certain
efficiency-related aspects of CLIPS program runs: for example, one can much more easily determine
the number of matches that occurred for a particular left-hand-side condition in a rule, or even the
number of matches for a subset of left-hand-side conditions (those involved in beta memories within
the Rete network). »

The rest of the paper is organized as follows. Section two briefly describes MIRO's architecture and
implementation. Section three then gives the cumrently-supported question-types, and illustrates how
some of those question-types can be used to help with debugging. Empirical results regarding
MIRO's run-time and partial storage overhead costs are given in section four, and section five
discusses some ideas for how MIRO might be used to study various efficiency aspects of CLIPS
programs. Finally, section six concludes the paper.

2. MIRO'S ARCHITECTURE AND IMPLEMENTATION

To improve CLIPS' debugging environment, MIRO adds to CLIPS a question-answering system able
to answer questions about the current CLIPS program run. We used CLIPS 5.0 as MIRO's basis.
Figure 1 depicts the architecture of MIRO. Because questions useful for debugging will often refer to

255
PRROIOING PAGE BLANK NOT FILMED e A5Y
‘ 22500 S L.

PR N

historical details of a program run, MIRO extends the CLIPS 5.0 inference engine to maintain
historical information about the facts and instantiations stored in the working memory, and about the
changes to the agenda. Moreover, in order to answer question-types we provided query-operators
that facilitate answering questions concerning past facts and rule-instantiations, and an agenda
reconstruction algorithm that reconstructs conflict-resolution information from a particular point of

time.
MIRO

MIRO Inference Engine

CLIPS50 | - [MIRO User Interface
Inference Engine (Question Processing)
History of the
Progrrgm Run Agenda Reconstruction
Agenda-Changes " Query Operators
Logs for Program History

Figure 1 - The MIRO Debugging Environment

One could describe MIRO as a tool for helping programmers to analyze a program run; it assists
them by making the acquisition of needed low-level details as simple as asking a question. Where,
before, they gathered clues that might suggest to them a fault's immediate cause by searching traces
and single-stepping through a program run, now they can simply ask questions to gather such clues.
The programmers still direct the debugging process, but the question-answering system helps them to
determine the next step in that process. By allowing programmers to spend less time single-stepping
through program runs and searching traces for historical details, this question-answering system can
let programmers save their attention and energy for the high-level aspects and intuition needed in
debugging.

As already mentioned, CLIPS 5.0 forms the basis of MIRO: the CLIPS 5.0 source code was modified
and augmented to implement MIRO. To quickly obtain an operational prototype, we used existing
code whenever possible, and we patterned the historical Rete and agenda reconstruction additions
after those ysed for regular Rete within CLIPS. This software reuse included replicating the code for
existing data structures when creating new data structures, augmenting existing data structures, calling
existing functions from new functions whenever possible, and modifying existing functions when
their functionality was almost, but not quite, what was needed.

So, when implementing, for example, historical Rete's past partitions, the past partitions were patterned
after the current (formerly only) partitions. The data structures for facts, instantiations, and rule
instantiations were all augmented with time-tags, and rule instantiations were also augmented with a
fired flag, set if that rule instantiation was actually fired. We added analogous functions to those used
for maintaining the current working memory for maintaining the past working memory, and so on.
This approach reduced programming overhead, and, because CLIPS 5.0 was already quite efficient,
the added historical components were also quite efficient.

We also added code to measure various run-time characteristics, such as the number of current and
past facts, rule instantiations, and Rete memory instantiations, to better compare program runs under
regular CLIPS and MIRO, as shown at the end of section four.

The butk of MIRO was implemented over the course of a single year, by a single programmer,
however, other research-related activities were being done concurently with this development. It

256

probably took about seven programmer-months to bring MIRO to the point where it had 19
question-types. Note, however, that this does not take into account the time spent designing the
historical Rete and agenda reconstruction algorithms.

The version of CLIPS 5.0 that we developed MIRO from, and that we used for comparisons with
MIRO, contained 80497 lines of code and comments; this includes the source code files, include files,
and the UNIX make file. The same files for MIRO contained 86099 lines, also including comments;
so, we added about 5600 additional lines of code and comments, making MIRO about 7% larger than
CLIPS 5.0.

3. MIRO'S QUESTION TYPES

Adding the question-answering system itself to MIRO was as easy as adding a new user-defined
function to the top-level of CLIPS; we constructed a CLIPS top-level function called askquestion. The
difficult part was determining the form that this question-answering would take. Our primary goals of
constructing a prototype both to demonstrate the feasibility of, and to illustrate how, the information
from the historical Rete network and other history-related structures could be used to answer
programmers' debugging-related questions had a strong impact on the design that we decided to use.

We assume that the kinds of questions that can be asked are limited to instances of a set of fixed
question-types; each question-type can be thought of as a template for a particular kind of question.
This allows the question-answering system to have a modular design: each question-type has an
algorithm for answering an instance of that type. This also allows additional question-types to be
easily added, and to be tested as they are added, as it is discovered which are desirable for debugging.

The design of the interface for getting programmers' questions to the explanation system is a worthy
research topic all by itself; to allow us to concentrate more on answering the questions, we use a very
simple interface, with the understanding that futiure work could include replacing this simple interface
with a more sophisticated front-end. Since we are more interested in designing a tool for debugging
and less interested in naturai language processing, the question-answering system uses a template-like
approach for the various question-types that the programmers will be able to ask. That is, each
question-type has a specific format, with specific **blanks" which, filled in, result in an instance of that
question-type. Furthermore, to avoid requiring the programmers to memorize these question-type
formats, we use a menu-based approach: when the programmers enter the command (askquestion), a
list of currently-supported question-types is printed on-scteen. They then enter the number of the
desired question-type, and the explanation system queries them to fill in that question-type's
necessary blanks.

Implementing this approach was quite straightforward, because regular CLIPS already has some tools
for obtaining top-level command arguments. We¢ only had to modify them a little to allow for the
optional askquestion arguments. A main askquestion function prints the menu if no arguments are
given, and then asks which question-type is desired; a case statement then uses either that result or the
first ask?uestion argument to call the appropriate question-answering function, which is in charge of
seeing if arguments for its needed values have already been given, or must be asked for. After each
patticular question-type's question-answering function obtains or verifies its needed values, it then
tries to answer the question, and print the result for the programmer.

We currently support 19 question-types, as shown in Figure 2. However, question 9, why a particular
rule did not fire, currently only tells if that rule was eligible or not at the specified time.

What fact corresponds to fact-id <pum>?

When did rule <pame> fire?

What rule fired at time <num>?

What facts were in memory at time <num>?

How many current facts are in memory now?

How many past facts are in memory now?

How many current rule activations are on the agenda now?
How many past rule activations are in memory now?

?QO\U#MNH

257

9. Why did rule <name> not fire at time <pum>?

10. How many current alpha instantiations are in memory now?
11. How many past alpha instantiations are in memory now?

12. How many current beta instantiations are in memory now?

13. How many past beta instantiations are in memory now?

14. What are the Rete mamory maximms?

15. What were the agenda changes fram time <num> to time <aum>?
16. How many current not-node instantiations are in memory now?
17. How many past not-node instantiations are in memory now?
18. What was the agenhda at the end of time <aum>?

13. How many agenda changes were there from time <num> to time <num>?

Figure 2 - Currently-Supported Question-Types in MIRO

We will now give some examples of MIRO's question-answering system at work. We will describe
some hypothetical scenarios, to illustrate how MIRO might be useful in debugging; the responses
shown are those that would be given by MIRO in such situations.

Consider a program run in which the program ends prematurely, that is, without printing any output.
One can find out the current time-counter value with a command that we added to MIRO specifically
for this purpose --- if one types (time-counter) after 537 rule-firings, it prints out:

time_counter is: 537

The programmers can now ask, if desired, which rules fired at times 537, 536, 535, etc. If they type
(askquestion), the menu of rules will be printed; if they choose question-type number 3, “*“What rule
fired at time <num>?", then it will ask what time-counter value they are interested in; if 537 is entered,
and if 4 rule named “tryit" happened to be the one that fired at that time, then MIRO would print an
answer like:

Rule tryit fired at time 537
with the following rule activation:
0 tryit: £-30,£-15,£f-47 time~tag: (530 *)(activn time-tag: 530 537))

This tells the programmers that rule tryit fired at time 537, and that the particular instantiation of rule
tryit that fired had LHS conditions matched by the facts with fact-identifiers {-30, {-15, and f-47. This
instantiation of rule tryit has been eligible to fire since time 530 --- before the 531st rule firing ---
but, as shown, the rule instantiation's, or activation's, time-tag is now closed, with the time 537, because
it was fired then, and a rule that is fired is not allowed to fire again with the same fact-identifiers.

Now, if the programmers suspect that this rule-firing did not perform some action that it should have
performed --- to allow another rule to become eligible, for example --- then they can use the regular
CLIPS command ““pprule” to print the rule, so that they can examine its RHS actions. If it should not
have fired at all, then they may wish to see why it was eligible. For example, in this case, they may
want to know what facts correspond to the fact-identifiers £-30, {-15, and f-47. One can look at the
entire list of fact-identifiers and corresponding facts using the regular CLIPS (facts) command, but if
the program has very many facts, it can be quite inconvenient to scroll through all of them. So, MIRQ
provides the question-type ““What fact comresponds to fact-id <num>?". On first glance, this question
appears to have no historical aspect at all;, however, it does include the time-tag for the instance of the
fact corresponding to this fact-identifier. This can be helpful to the programmers, if they suspect that
one of the facts should not have been in working memory --- then, the opening time of that fact's
time-tag can be used to see what rule fired at that time, probably resulting in this fact's addition. Since
this question-type is the first in the list, and requires as its only additional information the number of
the fact identifier whose fact is desired, typing (askquestion 1 47) will ask the first question for fact-
identifier f-47, giving an answer such as:

Fact-id 47 is fact:
(p X Y) time-tag: (530 *)

If the programmers suspect that fact 47, now known to be (p X Y), should not be in working

258

memory --- if they think that it is a fault that it exists, and is helping rule tryit to be able to fire ---
then they can again ask the question-type “*What rule fired at time <num>?" to see what rule fired at
time 530, when this instance of (p X Y) joined working memory. They can then see if the rule that
fired at time 530 holds the cause of the fault of (p X Y) being in working memory, and enabling the
faulty firing of tryit at time 537.

4. COMPARISONS BETWEEN MIRO AND CLIPS 5.0

As already mentioned, we implemented MIRO by starting with CLIPS 5.0, we then generalized its
Rete inference network [2] into a historical Rete network, added an agenda reconstruction capability,
and added the prototype question-answering capability. Historical Rete and agenda reconstruction are
discussed in more detail in [5] and [6]. We also made some other modifications, to allow for
experimental measures; for example, we added code to measure various run-time characteristics such
as the number of current and past instantiations, and the number of current and past facts. We then
ran a number of programs under both MIRO and CLIPS 5.0.

The programs that we used range fairly widely in size, and behavior. Four of the programs ---
dilemmal, mab, wordgame, and zebra --- are from CLIPS 5.0's Examples directory. The dilemmal
program solves the classic problem of getting a farmer, fox, goat, and cabbage across a stream, where
various constraints must be met. The mab program solves a planning problem in which a monkey's
goal is to eat bananas. The wordgame program solves a puzzle in which two six-letter names are
“added" to get another six-letter name, and the program determines which digits comrespond to the
names' letters. Finally, the zebra program solves one of those puzzies in which five houses, of five
different colors, with five different pets, etc., are to each have their specific attributes determined,
given a set of known information.

The AHOC program was written by graduate students in the University of Houston Department of
Computer Science's graduate level knowledge engineering course COSC 6366, taught by Dr. Eick in
Spring 1992. AHOC is a card game with the slightly-different objective that the players seek to win
exactly the number of tricks bid. The program weaver ([1], [3]) is a VLSI channel and box router;
we obtained a CLIPS version of this program from the University of Texas' OPS5 benchmark suite.
Finally, can_ordering 1 is a small program that runs a rather long canned beverage warehouse
ordering simulation, also from the Spring 1992 COSC 6366 knowledge engineering class; it was
written by C. K. Mao.

We ran each program three times under MiRO and under CLIPS 5.0, on a Sun 3 runping UNIX, with
either no one else logged in, or one other user who was apparently idle. For every run in both CLIPS
and MIRO, we used the (watch statistics) command to check that the same number of rules fired for
each run of the program; for every MIRO run of a program, we also made sure that all runs had the
same number of instantiations at the end of the run. The run-times are given in Table 1.

The run-times for programs run using MIRO were usually only slightly slower than those using
regular CLIPS 5.0, one program, mab, took 11.4% more time in MIRO, but on average, the MIRO
runs only took 4.1% more time. Interestingly enough, AHOC ran, on average, slightly faster under
MIRO than under regular CLIPS. This could be because regular CLIPS 5.0 returns the memory used
for facts and instantiations to available memory as they are removed, which MIRO does not do until a
reset or clear, because such facts and instantiations are instead kept, and moved into the past fact list
or past partitions. The average 4.1% additional time required by MIRO to run a program seems quite
reasonable, especially since the additional time is only tequired while debugging, and allows
programmers the benefits of the MIRO tool.

Another feature of the (watch statistics) command under regular CLIPS, besides printing the number
of rules fired and the time elapsed, is that it also prints the average and maximum number of facts
and rule instantiations during those rule-firings. We enhanced this command in MIRO so that it also
keeps track of the average and maximum number of past facts and past rule instantiations, as well as
the averages and maximums for different kinds of Rete memory instantiations, both past and current.
To get some idea of the overhead needed to store historical information from a run, we compared the
average number of current facts during a run to the average number of past facts, and compared the

259

Table 1

Run-Times

program which |# rules run . times | (insec)] avg | %
] CLIPS | fired | runi l run2 [run3 [run-time|slower
dilemmal |regular| | :

MIRO ‘
mab regular| 81} 2,02

MIRO
wordgame _ lregular| 102|

MIRO
Zebra |regular

MIRO
AHOC |regular

MIRO
weaver regular/ 745

MIRO | 745 20
can_ordering.. 1| regular .

MIRO

average number of current rule instantiations to the average number of past rule instantiations.

Another feature of the (watch statistics) command under regular CLIPS, besides printing the number
of rules fired and the time elapsed, is that it also prints the average and maximum number of facts
and rule instantiatiohs during those rule-firings. We enhanced this command in MIRO so that it also
keeps track of the average and maximum number of past facts and past rule instantiations, as well as
the averages and maximums for different kinds of Rete memory instantiations, both past and current.
To get some idea of the overhead needed to store historical information from a run, we compared the
average number of current facts during a run to the average number of past facts, and compared the
average number of current rule instantiations to the average number of past rule instantiations.
(Analogous comparisons for different kinds of Rete memory instantiations, as well as comparisons of
the maximum number of current items to the maximum number of past items, can be found in [en.)

Table II shows these averages for facts and rule instantiations. It also gives, where appropriate, how
many times bigger the average number of past items is than the average number of current items.
Compared to the average number of current items during a run, fewer times as many past facts than
past rule instantiations will need to be kept. This suggests that there is more overhead to storing rule
instantiation history than there is to storing fact history.

Table 1 shows that the space to store past facts and rule instantiations, compared to the average space
to store current facts and rule {nstantiations, can, indeed, be high, especially for long runs. But, long
runs should be expected to have more historical information to record. Also, it should be noted that
in running these programs on a Sun 3, we never ran into any problems with space, even with the
additional historical information being stored. During program development, the storage costs
should be acceptable, since they facilitate debugging-related question-answering. The programmers
can also limit the storage costs by only running their program using MIRO when they might want to
obtain the answers to debugging-related questions; at other times, they can run their program using
regular CLIPS.

§. USING MIRO IN STUDYING CLIPS PROGRAMS
We hope that MIRO's question-answering system can make debugging a CLIPS program easier and

less tedious. Here, we consider another use of MIRO: to analyze certain performance aspects of
CLIPS programs. With a shift of viewpoint, such analysis may be involved in a variant of debugging -

260

Table I1
Average No. of Facts and Rule Instantiations

program | avg. # of factﬁ_ti_mes avg. # rule instsj times

current | past [bigger currept . past ‘ bigger |
dlemmal | 11 20 18 6 72 12.00
mab L1942 221 1 64 64.00
wordgame | A LI T 49 51, 1.04
zebra | 78,14, 018 11 14 127
AHOC 231 792 343 107, 3447 3221
weaver | 151, 383 254 6. 689 11483
can_ordering_1 113 1639 14.50! 10 2795 279.50

-- if, for example, a program takes so long to run that the programmers consider the run-time to be a
problem, then such performance analysis may help in determining how to modify the program so
that it takes less time. Such aspects may also be of interest in and of themselves, both to programmers
and to researchers studying the performance aspects of forward-chaining programs in general.

Note that a Rete network, historical or regular, encodes a program's rules' LHS conditions; the RHS
conditions of those rules are not represented, except perhaps by pointers from a rule's final beta
memory to its actions, to help the forward-chaining system to more conveniently execute the RHS
actions of a fired rule. So, MIRO could be helpful primarily in analyzing the efficiency involved in
the match step of the recognize-act cycle. Being able to locate Rete memories whose updating could
cause performance trouble-spots could be useful for improving the overall performance of a CLIPS
program.

Using MIRO, it is much easier to discover some of the dynamic features of a CLIPS program run,
such as the number of instantiations within the network during a run. One can study worst-case and
average-case behavior within a CLIPS program run by looking at the number of average, and
maximum, facts, rule instantiations, and alpha, beta, and not-memory instantiations. For example, a
great disparity between the average number of current beta instantiations, and the maximum number
reached during a run could indicate volatility in beta memory contents that could have a noticeable
performance impact.

One might consider the total number of changes to a beta memory during a run to be the total
number of additions to and deletions from that memory --- or, the total number of current
instantiations at the end plus two times the number of past instantiations. Averaged over the number
of rule-firings, this would give the number of beta memory changes per rule-firing, which, if high,
might very well correlate with more time needed per rule-firing; and, averaged over the number of
total beta memories, this would give us a rough average of the number of changes per beta memory.
We could even determine a nurhber of working memory changgs this way, by adding the number of
current facts to two times the number of past facts, and use this to obtain an average number of fact
changes per rule firing.

Another measure that might be very telling would be the average number of memory changes per
rule-firing, computed by counting each past instantiation at the end of a run as two memory changes
--- since each was first added to a curment instantiation, and then moved to a past partition --- and
each current instantiation at the end of a run as a single memory change, and then dividing the sum
by the number of rule-firings. We can also determine the average number of fact changes per rule-
firing similarly. In measurements we made using the seven programs discussed in the previous
section, the most important factor that we found that correlated with performance was that a high
number of instantiation change$ per rule-firing did seem to correlate with more time néeded per rule-
firing [6].

Although one can reasonably obtain some of the information mentioned above by using regular
CLIPS, much of it would be very inconvenient to gather using it. For example, determining the

261

average and maximum number of past facts and past rule instantiations would be difficult to obtain
using regular Rete. We modified the existing CLIPS (watch statistics) command in MIRO so that it
also keeps track of this additional information.

Note that historical Rete can also be used to support trouble-shooting tools and question-types, in
addition to supporting question-answering for debugging. For example, any time that the
programmer can specify a particular time of interest, historical Rete searches can be made that focus
only on instantiations in effect at that time. :

The discussed examples show the potential that MIRO has as a tool in analyzing CLIPS program
performance, as well as in debugging. Information about what occurred during Rete network
memories can be more reasonably retrieved, making such analysis more practical, across larger
samples of programs. Note, too, that a programmer can choose to look at averages over all of a
program'’s memories; or for a single memory, or for a particular rule's memories, as desired.

6. CONCLUSIONS

In this paper, we have followed up on our work reported at the last CLIPS conference, describing how
we have implemented historical Rete and question-answering for debugging in' MIRO, a debugging
tool built on top of CLIPS 5.0. We have described MIRO, and have hopefully given a flavor for how
it may be used to make debugging a CLIPS program easier and less tedious, by allowing
programmers to simply ask questions to determine when program events --- such as rule firings, or
fact additions and deletions - occurred, instead of having to depend on program traces or single-
stepping program ryns. We have further described how MIRO might be used to study certain
performance-related aspects of CLIPS programs.

The empirical measures included also show that MIRO's costs are not unreasonable. Comparisons of
programs run in both MIRO and CLIPS 5.0, which MIRO was built from, have been given; on
average, the run-time for a program under MIRO was only 4.1% slower than a program run under
CLIPS 5.0, when both were run on a Sun 3. Comparing the average number of past facts and rule
instantiations to the average number of current facts and current rule instantiations, there were, on
average, 3.53 times more past facts than cument facts, and 72.12 times more past rule instantiations
than current rule instantiations. But this historical information permits the answering of debugging-
related questions about what occurred, and when, during an expert system run. We also gave
examples of the kinds of question-types that MIRO can currently answer, as well as examples of the
kinds of answers that it gives. We hope that this research will encourage others to also look into how
question-answering systems can be designed to serve as tools in the development of CLIPS programs.

REFERENCES

1. Brant, D. A., Grose, T., Lofaso, B., Miranker, D. P., "Effects of Database Size on Rule Systemn Performance:
Five Case Studies,” Proceedings of the 17th International Conference on Very Large Data Bases (VLDB), 1991.

2. Forgy,C. L., "Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem,”
ARTIFICIAL INTELLIGENCE, Vol. 19, September, 1982, pp. 17-37.

3. Joobbani, R., Siewiorek, D. P., "WEAVER: A Knowledge-Based Routing Expert," IEEE DESIGN AND
TEST OF COMPUTERS, February, 1986, pp. 12-23.

4. Tutde, S. M., Bick, C. F., "Adding Run History to CLIPS," 2nd CLIPS Conference Proceedings, Vol. 2,
Houston, Texas, September 23-25, 1991, pp. 237-252.

5. Tuttle, S. M., Eick, C. F., "Historical Rete Networks to Support Forward-Chaining Rule-Based Program
Debugging,” INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, Vol. 2, No. 1,
January, 1993, pp. 47-70.

6. Tutle, S. M., "Use of Historical Inference Networks in Debugging Forward-Chaining Rule-Based Systems,"
Ph.D. Dissertation, Department of Computer Science, University of Houston, Houston, Texas, December,
1992. '

262

